Consistent Neighborhood Search for Combinatorial Optimization

نویسندگان

  • Michel Vasquez
  • Nicolas Zufferey
چکیده

Many optimization problems (from academia or industry) require the use of a local search to find a satisfying solution in a reasonable amount of time, even if the optimality is not guaranteed. Usually, local search algorithms operate in a search space which contains complete solutions (feasible or not) to the problem. In contrast, in Consistent Neighborhood Search (CNS), after each variable assignment, the conflicting variables are deleted to keep the partial solution feasible, and the search can stop when all the variables have a value. In this paper, we formally propose a new heuristic solution method, CNS, which has a search behavior between exhaustive tree search and local search working with complete solutions. We then discuss, with a unified view, the great success of some existing heuristics, which can however be considered within the CNS framework, in various fields: graph coloring, frequency assignment in telecommunication networks, vehicle fleet management with maintenance constraints, and satellite range scheduling. Moreover, some lessons are given in order to have guidelines for the adaptation of CNS to other problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Winner Determination in Combinatorial Auctions using Hybrid Ant Colony Optimization and Multi-Neighborhood Local Search

A combinatorial auction is an auction where the bidders have the choice to bid on bundles of items. The WDP in combinatorial auctions is the problem of finding winning bids that maximize the auctioneer’s revenue under the constraint that each item can be allocated to at most one bidder. The WDP is known as an NP-hard problem with practical applications like electronic commerce, production manag...

متن کامل

Lot Streaming in No-wait Multi Product Flowshop Considering Sequence Dependent Setup Times and Position Based Learning Factors

This paper considers a no-wait multi product flowshop scheduling problem with sequence dependent setup times. Lot streaming divide the lots of products into portions called sublots in order to reduce the lead times and work-in-process, and increase the machine utilization rates. The objective is to minimize the makespan. To clarify the system, mathematical model of the problem is presented. Sin...

متن کامل

Very Large-Scale Neighborhood Search for Solving Multiobjective Combinatorial Optimization Problems

Very large-scale neighborhood search (VLSNS) is a technique intensively used in single-objective optimization. However, there is almost no study of VLSNS for multiobjective optimization. We show in this paper that this technique is very efficient for the resolution of multiobjective combinatorial optimization problems. Two problems are considered: the multiobjective multidimensional knapsack pr...

متن کامل

Relaxation Guided Variable Neighborhood Search

In this article we investigate a new variant of Variable Neighborhood Search (VNS): Relaxation Guided Variable Neighborhood Search. It is based on the general VNS scheme and a new Variable Neighborhood Descent (VND) algorithm. The ordering of the neighborhood structures in this VND is determined by solving relaxations of them. The objective values of these relaxations are used as indicators for...

متن کامل

A hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem

We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013